HEMI-ACETAL STABILIZATION OF THE CHAIR-BOAT FORM IN BICYCLO[3.3.1]NONANES. A ¹³C NMR INVESTIGATION.

Th. Reints Bok¹⁾, C. Kruk and W.N. Speckamp^{*}, (Laboratory for Organic Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, Amsterdam. The Netherlands).

(Received in UK 2 December 1977; accepted for publication 23 December 1977)

In a preceding communication the hemi-acylal formation leading to a fixed chair-boat form A in bicyclo[3.3.1] nonanes has been discussed²⁾. Aiming at a better understanding of this unusual phenomenon³⁾ two hydroxyketones capable of formation of the acetal derivative \underline{B} were synthesized in which the eventual Y-Z

bridge had been shortened by one carbon atom.

The N-tosyl-3-aza-7 -exo acetate 3 prepared in an unequivocal manner⁴⁾ from the A X=CH₂ or NTs, Y=-C-, Z=O B X=CH₂ or NTs, Y-Z=O bicyclo[3.3.1]nonane⁵⁾ gave upon hydrolysis

(NaOH-H₂O/CH₃OH) a mixture of two isomeric

Fig.1 compounds to which structures <u>1a</u> and <u>1b</u> were assigned on the basis of the following ¹H and ¹³C NMR evidence. C_7 -H signals in the ¹H NMR spectrum (CDCl₃; 35°) were found at 5.20 ppm for <u>la</u> (H_{ax}) and at 4.25 ppm for <u>lb</u> (H_{eq}); the ratio of the two C_7 -H absorptions being determined at 45:55 for <u>1a:1b</u>⁶⁾ respectively. From variable temperature ¹H NMR studies in different solvents the amount of <u>la</u> present at -60°C (CDCl₃/C₅D₅N) is estimated at 15% while at 90°C(toluene-d8) the ratio of <u>1a</u> and <u>1b</u> is almost equal. In diphenylether the ratio of <u>1a</u> and <u>1b</u> at 35°C was found to be 30:70 while at 130° coalescence of the C7-H signals occurred.

Acetylation of the mixture 1a+1b (BF₃OEt₂/HOAc) yielded 3 in quantitative yield indicating that upon hydrolysis isomerization at C_7 had not taken place. The C_7 -endo isomer 4 possessing the chair-boat conformation is synthesized via an

657

independent route⁴⁾ and shows completely different spectral behaviour. These results strongly point to the existence of a conformational or tautomeric equilibrium between the two isomers <u>1a</u> and <u>1b</u>, however without proving the hemi-acetal form of <u>1b</u>.

A ¹³C NMR spectrum in C_5D_5N of the mixture <u>1a+1b</u> demonstrated a conspicuous signal at 104.9 ppm (Table) in addition to the C (9) = 0 signal at 213.8 ppm. At -35°C the latter signal had almost vanished together with the other absorptions assigned to <u>1a</u>, while at higher temperature (70°C) the peaks of both isomers were still present. The assignment of the ¹³C data was based upon analysis of the offresonance decoupled spectra at different temperatures and selective ¹³C- $\{^1H\}$ decoupling experiments and is given in the table. The spectral data of <u>1a</u> clearly indicate the double chair conformation⁷⁾. The signal at 104.9 ppm is most likely attributed to the hemi-acetal carbon at C₉ of <u>1b</u>⁸⁾⁹⁾.

> <u>TABLE</u> ¹³C Chemical shift data of 7-hydroxy-9-oxo-bicyclo [3.3.1]nonanes in $C_5 D_5 N$ at 37° ^{a)b)}.

Compound	°1,5	с _{2,4} с)	c3 ^{c)}	с с) 6,8	c7 ^{c)}	c ₉
<u>1a</u>	45•8	53.3		41.7	62.9	213.8
<u>1b</u>	40.5	46•2		35.4	71.0	104.9
<u>2a</u>	45•2	35.2	19.6	41.6	63.8	218.6
2b	35.6	25.0	15.1	39.9	70.8	107 • 1

a) Spectra were recorded on a Varian XL-100 15 in FT-spectrometer in 5 mm tubes at 25.2 MHz. Chemical shifts, relative to internal TMS, were obtained from the proton noise decoupled spectra.

b) Data were measured from -35°C to 70°C; no appreciable solvent effects could be found.

c) See note 10.

No. 7

In order to ascertain the above conclusion the corresponding carbocyclic derivatives were also prepared. The 7-<u>exo</u>-hydroxy-9-oxo-bicyclo[3.3.1]nonane <u>2a</u>¹⁰⁾ was obtained as a byproduct in the decarboxylation of 7-<u>endo</u>-carbohydroxy-9-oxo bicyclo[3.3.1]nonane¹¹⁾ with Pb(OAc)₄. Hydrolysis by base and chromatography of the two isomeric alcohols yields 16% of <u>2a</u> and 8% of <u>5</u>. C_7 -H_{ax} signals in the ¹H NMR spectra (CDCl₃) were found at 4.60 ppm for <u>2a</u> and 3.70 ppm for <u>5</u>.

Variable temperature ¹³C NMR experiments in C_5D_5N of <u>2a+2b</u> also showed an absorption at 107.1 ppm next to other characteristic signals assigned to <u>2b</u> (Table). The latter peaks indicate a minor contribution of <u>2b</u> to the equilibrium at 37°C and also explain the virtual absence of <u>2b</u> signals in ¹H NMR. At lower temperatures the proportion of <u>2b</u> increases while at 70°C absorptions of <u>2b</u> cannot be detected. As compared to <u>1b</u> however the hemi-acetal form <u>2b</u> appears to be present in significantly lesser amounts suggesting an extra stabilizing effect on the boat form of the bulky tosyl substituent in <u>1b</u>. The spectral data for <u>2a</u> are in agreement with a double chair conformation¹²⁾.

Apart from the signals at 104.9 ppm and 107.1 ppm a number of other data also support the cyclic hemi-acetal structure. The value of $J(1^{3}C-1H)$ for C_{7} of 158.9 Hz for <u>1b</u> and 156.9 Hz for <u>2b</u> is in entire agreement as to the literature value for the corresponding carbon atom in 7-oxa-bicyclo[2.2.1]heptane (157 Hz)¹³. The influence of the hemi-acetal molety is noticeable by the shift of $C_{2,4}$ from 53.3 ppm for <u>1a</u> to 46.2 ppm for <u>1b</u> and from 35.2 ppm for <u>2a</u> to 25.0 ppm for <u>2b¹⁴</u>. Furthermore $C_{6,8}$ in <u>1b</u> and $C_{6,8}$ and C_{3} in <u>2b</u> are shielded by the effect of interactions of the tosylgroup and the C_{3} -endo protons respectively¹². The C_{7} signals at 71.0 ppm for <u>1b</u> and 70.8 ppm for <u>2b</u> are highly indicative for an ether bonding rather than the free C_{7} -OH molety which shows an absorption at higher field¹⁵⁾¹⁶.

The presently discussed examples of a chair-boat equilibrium once again illustrate the importance of chemical stabilization of an a priori unfavorable conformation. It should be noted that the presence of the hemi-acetal form can only be verified by ¹³C NMR; the combination of ¹³C NMR and ¹H NMR therefore proves to be a method of choice for studying these phenomena.

References

- Part of the forthcoming Ph.D.Thesis of Th. Reints Bok, University of Amsterdam.
- 2. H. van Oosterhout, C. Kruk and W.N. Speckamp, preceeding communication.
- P. Hanisch, A.J. Jones, A.F. Casy and J.E. Coates, <u>J.C.S. Perkin II</u>, 1202 (1977).
- 4. Th. Reints Bok and W.N. Speckamp, to be published.
- W.N. Speckamp, J. Dijkink, A.W.J.D. Dekkers and H.O. Huisman, <u>Tetrahedron</u>, <u>27</u>, 3143 (1971).
- 6. The ratio of <u>la:1b</u> was obtained by integration of the C_7 -H and the N-CH₂ absorptions in ¹H NMR (accuracy 5%).
- 7. Th. Reints Bok, H. van Oosterhout and W.N. Speckamp, to be published.
- 8. R.D. Lapper, H.H. Mantsch and I.C.P. Smith, Can.J.Chem., 53, 2406 (1975).
- 9. Possible hydrate formation at C (9) = 0 could be excluded by working under extremely dry conditions. See also A.J. Jones and M.M.A. Hassan, <u>J.Org.Chem.</u>, 37, 2322 (1972).
- For easier comparison of corresponding C-atoms the systematic numbering of 3-azabicyclo[3.3.1]nonanes has been maintained.
- 11. J. McEuen, R.P. Nelson and R.G. Lawton, J.Org.Chem., 35, 690 (1970).

J.A. Peters, J.M. van der Toorn and H. van Bekkum, <u>Tetrahedron</u>, <u>33</u>, 349 (1977)
M. Tamres, S. Searles Jr. and J.M. Goodenow, <u>J.Am.Chem.Soc.</u>, <u>86</u>, 3934 (1964).
H.-J. Schneider, M. Londsdorfer and E.F. Weigand, <u>Org.Magn.Reson</u>, <u>8</u>, 363 (1976)
J.R. Wiseman and H.O. Krabbenhoft, <u>J.Org.Chem.</u>, <u>40</u>, 3222 (1975).

16. H-J. Schneider and W. Ansorge, <u>Tetrahedron</u>, <u>33</u>, 265 (1977).